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We present a concept and first results of combining multispectral Light Detection And Ranging (lidar) with 
positioning sensors to produce spatially resolved target identification in indoor environment. The aim is to 
enhance the sensor-based indoor localization with a multispectral target identification and mapping. There 
is a growing need for automatic and mobile mapping and surveillance in buildings and locations where 
satellite positioning is not available. Lidar is a common sensor in feature-based Simultaneous Localization 
and Mapping (SLAM). As multispectral lidars are emerging and becoming increasingly popular in research 
applications, the multi/ hyperspectral point clouds are likely to improve object recognition and enable a new 
level of autonomous surveillance in the near future. Our first results show that position solution can be 
obtained using sensors attached to the lidar.  

INTRODUCTION 
Indoor positioning for Global Navigation Satellite System (GNSS) denied environments have been studied 
increasingly during the past few years [1]. Sensor positioning is based on propagating the known initial 
position and heading with motion measurements obtained from the sensor. However, sensor measurements 
suffer from errors, which deteriorate the solution in time. Therefore, fusion of sensors with different error 
characteristics enables the solution to stay accurate for longer time. This is particularly the case when using 
low-cost sensors, especially Micro-Electro-Mechanical Sensors (MEMS) [2]-[4].  

Indoor positioning methods can be roughly categorized into three approaches, based on radio frequency 
fingerprinting, motion-based, and visual [1],[5]. As radio fingerprinting requires an existing infrastructure 
(such as wireless network or separate identification tags), sensor positioning is more widely applicable in any 
environment. Inertial sensors, namely accelerometers and gyroscopes forming an Inertial Measurement Unit 
(IMU), have been used for sensor positioning. IMUs provide translation and heading measurements, but they 
must be calibrated with some absolute positioning means or fused with motion measurements obtained from 
different sources, such as visual odometry [4] to improve the quality.  

Combining positioning sensors and Light Detection And Ranging (lidar) has become a widely used approach 
for mobile mapping and robotics [4],[6]. Lidar is commonly utilized in Mobile Laser Scanning (MLS).  
The MLS systems also rely on GNSS, mainly for direct georeferencing of point clouds [7], but the increasing 
number of autonomous robotic platform applications [4],[8] has emphasized the need for better location 
accuracy. The growing demand for robotic and situational awareness applications in GNSS denied 
environments will emphasize the role of multi-sensor indoor positioning [9]. 3D detection of features with 
lidar is also common in Simultaneous Localization and Mapping (SLAM) [6]. SLAM provides infrastructure 
-free accurate and reliable localization and information on the environment by means of adaptive integration 
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of data from multiple sensors [8], [10]. In SLAM, lidar is typically combined with other optical and 
odometry sensors, IMU [4] and GNSS in outdoor applications [11]. 

The common estimation frameworks to produce a SLAM solution are based on Kalman Filter (KF)  
and Particle Filter (PF) [8]. PF was implemented in [2] to integrate motion (heading and translation) 
measurements from a monocular camera, foot-mounted IMU, Sound Navigation And Ranging (sonar), and a 
barometer to produce an accurate and reliable three-dimensional (3D) localization solution for SLAM.  
The horizontal accuracy was 3.14 m with standard deviation of 2.82 m. The results could be improved with 
more accurate error modelling and additional sensors, such as multiple IMU’s or visual lidar odometry [4]. 

Iterative Closest Point (ICP) is a method for providing the translation and rotation between two point clouds 
[12]. However, ICP needs a good a priori measurement of transformation to converge. Also, when lidar is 
moved, the point clouds suffer from motion distortion, which should be corrected using other measurements. 
When these challenges are tackled and the two point clouds are matched, the difference between their 
position and orientation may be used to obtain motion information via lidar odometry [4].  

Visual odometry measurements form a monocular camera are often used to solve the challenges related to 
lidar odometry, and to obtain an accurate localization solution. Monocular cameras have advantages for 
visual perception compared to stereo cameras; they have wider field-of-view and provide faster image 
processing capabilities [13]. However, traditionally stereo cameras have been mainly used, because methods 
based on monocular cameras usually suffer from so called ambiguous scale problem [14]. In our previous 
studies, we have developed a concept called visual gyroscope and visual odometer [13], which resolves the 
scale problem and provides absolute translation and rotation information to be used for localization.  

There is a trade-off between accuracy and computing time cost in SLAM solutions, and numerous methods 
have been introduced to optimize the positioning solution [10],[15]. With post processing, centimetre-level 
accuracy can be achieved, while a real-time application could be improved to decimetre level at least for 
feature-rich environments [15]. 

Laser scanning applications have reached a new level as multi-wavelength lidar applications have emerged 
[16]-[18]. The output from a multispectral lidar comprises the point cloud (x,y,z,I), where the intensity I 
contains multiple values of wavelength. The multi-wavelength aspect has enabled a new level of detail in, 
e.g., vegetation studies, where hyperspectral sensing is a well-established method for identification and 
classification of targets and monitoring different plant activity [19]. Active hyperspectral sensing based on 
supercontinuum lasers has also been applied for long-range target characterization [20]. 

In this paper, we demonstrate the potential of multispectral target identification combined with multi-sensor 
indoor positioning, to provide one-shot spectral identification and position information for the targets. In our 
previous paper [21] we extended the target identification from 3D hyperspectral point clouds into industrial 
targets and built environment. We have shown in our earlier studies that the hyperspectral lidar (HSL) is 
capable of measuring different phenomena in 3D, such as leaf-level moisture in vegetation and its 
distribution over extended targets [16]. We have also developed algorithms for automatic classification of 
targets with both spectral and spatial features [22]. The ultimate aim of our research is to combine the 
hyperspectral lidar target detection with sensor positioning for a real-time SLAM method with improved 
optical sensing (point-wise target identification using spectral libraries) and autonomous indoor mapping. 
We also discuss the accuracy of our method and discuss its future prospects of providing autonomous target 
characterization from 3D features and spectral data in addition to autonomous mobility. 

DATA AND METHODS 

The Finnish Geospatial Research Institute Hyperspectral Lidar (FGI HSL) is a prototype multi-wavelength 
laser scanner [16], with a supercontinuum laser light source (420–2400 nm, 41 mW average optical power,  
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5 kHz pulse rate). The operation principle is the same as in a monochromatic pulse-based terrestrial lidar, but 
the output point cloud (x,y,z,I) contains the intensity I as a function of wavelength, i.e., an eight channel 
spectrum (500-1000 nm) is associated with each point (x,y,z). The range measurement is based on the time-
of-flight of the reflected laser waveform. An off-axis parabolic mirror is used as a primary optic to gather the 
returning laser pulses. The detector consists of a spectrograph (Specim Imspector V10), placed in front of a 
16-element avalanche photodiode (APD) array. A high-speed (1 ns) digitizer enables data storage at  
8 wavelength bands. Thus the detector system is multispectral, but the wavelength channels can be selected 
by adjusting the spectrograph position with respect to the APD array. A monochromator (Oriel, Cornerstone 
74125) was used to calibrate the spectral responses of the APD elements. The scanning over the target was 
performed with a 2D scanner to produce a point cloud. See Figure 1 and [16] for more details on the 
instrument and data processing. 

 

Figure 1: To ensure traces are distinguishable in black and  
white, please use a variety of shapes and/or dashed lines. 

Three different targets were investigated (see also [21]): two were cardboard samples one of which was 
sprayed wet with water, and the third was a wooden panel with some mold on it. The targets were placed 
hanging on a wire in the middle of the area to be scanned. The HSL wavelength channels in this study were 
536, 589, 634, 688, 741, 793, 848, and 951 nm. We scanned the entire corner of the laboratory to produce a 
point cloud (Figure 2), which was processed with MATLAB R2013a software (The MathWorks®, Inc).  
The samples were manually cropped from the point cloud to obtain the mean backscattered reflectance of all 
the echoes from each target. In further applications of this method, it is possible to replace the manual 
identification with algorithms developed for HSL data for automatic target identification [22],[23]. 
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Figure 2: The targets hanged on a wire in the scanned area. The wet and dry  
cardboard samples are in the left and middle, respectively (left). The  

HSL point cloud of the room corner, showing the targets (right). 

The multi-sensor three-dimensional indoor positioning solution in this experiment is computed by fusing the 
measurements obtained using a monocular camera, IMU, a barometer, and sonar. The goal of our research is 
to develop a hyperspectral multi-sensor SLAM solution, providing improved accuracy and reliability for 
localization. 

Heading and velocity may be computed from the IMU measurements and when the initial position and 
orientation are known, a continuous position solution obtained by propagating the measurements in time. 
However, IMU alone is not sufficient for accurate positioning and therefore the measurements are fused with 
visual odometry, which also provides heading and velocity measurements. With a special configuration of 
the camera, namely knowing its height and being able to compute its orientation using image processing 
means [13] absolute translation measurements may be obtained. Visual odometry does not provide accurate 
vertical motion information and therefore a barometer will be used for obtaining height measurements.  
A barometer provides accurate height information by measuring changes in air pressure. However, the 
ambient pressure indoors may change significantly due to opening a window or due to air conditioning and 
therefore changes in height measured by a sonar sensor pointing down to the floor will be used to evaluate 
the reliability of obtained height measurements. More details of the measurement are given in [2]. 

Particle filtering (PF) [24] was used here for fusing the heading and translation measurements form a 
monocular camera and the IMU, a barometer, and sonar. 

RESULTS 

Figure 3 shows a close-up of all targets and their intensity at 720 nm and 818 nm. The spectra of the wet and 
dry cardboard panel are plotted in Figure 4. The spectra were obtained by extracting the object from the point 
cloud and averaging the intensity of all points at each wavelength channel. Overall, we have observed a 6% 
approximate error level in the reflectance measurement of the HSL detector. The difference in the intensity 
between different targets is visible at all wavelengths. The difference is more pronounced at near-infrared 
wavelengths greater than 1000 nm because of the strong water absorption [e.g., [20]]. However, these results 
enable us to demonstrate the use of spectral indices in target detection. 
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Figure 3: The targets cropped from the original point cloud. The intensity for each point is 
plotted in HSL channel 4: 720 nm (left) and 6: 818 nm (right). The dry and wet cardboard samples 

are in the left and middle, respectively (cf. Figure 2), while the wood sample is on the right. 

 

 

Figure 4: The 8-channel average spectra of the wet and dry cardboard targets. 

The automatic target identification algorithms developed for the HSL data are based on 3D features extracted 
from the point cloud, combined with spectral identification using Spectral Correlation Mapping [23] or 
spectral indices [22]. As an example of spectral indices in identifying target characteristics, we computed 
two different water indices: the water concentration index WI [25], which is based on a water absorption 
band at 970 nm and reference wavelength (900 nm): 

 𝑊𝑊𝑊𝑊 = 𝑅𝑅900
𝑅𝑅970

   (1) 

As 900nm and 970 nm were not available in this measurement, we used 848 nm and 951 nm instead to 
obtain WI=0.96 for dry and WI=0.94 for wet sample, using the average spectra plotted in Figure 4. 
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We also compared the Normalized Water Index NWI [26]: 

 𝑁𝑁𝑊𝑊𝑊𝑊 = 𝑅𝑅970−𝑅𝑅850
𝑅𝑅970+𝑅𝑅850

 (2) 

Again, we used 951 nm and 848 nm instead and obtained NWI=0.02 for dry and NWI=0.33 for the wet 
sample, using the values averaged over the entire sample. However, the NWI values show some variation 
over the targets, which is seen in the plotted extract of the point cloud in Figure 5, showing the NWI for both 
cardboard samples. Nevertheless, there is a visible difference between the wet and dry cardboard samples. 

 

Figure 5: The Normalized Water Index NWI =[R970–R850]/[R970+R850] (Eq. 2) plotted for each 
point in the point cloud extract showing all three targets. Cf. [23]. There is a difference in NWI 

between the wet and dry cardboard samples (middle and left, respectively). 

The fused position solution was computed by navigating from outdoors to indoors into the room where the 
HSL sensor was located. The navigation trajectory is presented in Figure 6.  

 

Figure 6: The navigation trajectory and the position of the HSL (cf. Figure 7). 
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The starting position and the attitude were obtained with a Novatel SPAN reference system, including a GPS 
receiver with a Honeywell HG1700 AG58 tactical grade IMU. After initializing the system the SPAN 
measurements were used only for a reference, the results presented below are obtained by comparing the 
fused position solution with the one computed from the reference system measurements. 

Osmium MIMU22BT foot-mounted multiple IMU and GoPro Hero 3 action camera were used for horizontal 
positioning and XSENS MTi-G-700 Inertial Navigation system’s (INS) barometer and HRUSB-MaxSonar 
sonar for vertical positioning. The positioning experiment was carried out at the premises of the FGI in 
Masala. The route walked was approximately 200 m and contained both outdoor and indoor parts, also 
including features that were challenging for both visual odometry and inertial sensing, such as spiral stairs. 
The Distance Root Mean Squared (DRMS) error of the computed horizontal position solution for the route 
was 3.4 m. For comparison we computed the horizontal position solution using an IMU only and the 
resulting DRMS was almost 6 m. Figure 7 shows the horizontal positioning solution for fused (blue) and 
reference (green) solutions. The mean error for the fused vertical position solution was 0.9 m, with standard 
deviation of 0.6 m, when computed by using IMU only 4.2m and 2.1m, respectively. Figure 8 shows the 
vertical positioning for fused (blue), IMU only (red) and reference (green) solutions. 

 

Figure 7: Top: Position solution for reference system (green) and fused solution (blue). The position  
of the HSL has been computed using the reference solution. Bottom: close-up showing the targets.  
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Figure 8: Vertical position solution for reference system  
(green), IMU only (red) and fused solution (blue). 

DISCUSSION 

Our results are similar (in terms of error levels) to those from non-GNSS positioning: [5] obtained a 5 m 
position drift in 1100 m using a non-GPS pedestrian navigation with a foot mounted IMU. The results were 
the same order as in [27], where the mean error was 4.87m for a set of half-an-hour walks, where the route 
varied from rectangular to random, and the step detection method was calibrated before each test. In our 
study, the route was challenging and contained height changes, such as spiral stairs, which complicated the 
measurement. Our method also aims at seamless outdoor-indoor navigation, which reduces the temperature 
stabilization time for the sensors. 

CONCLUSION 

The clear difference in the Normalized Water Index for wet and dry samples indicates the potential for using 
the NWI and other spectral indices in automatic target detection algorithms. In case of moisture based 
detection, the water absorption is stronger at wavelengths further in the near-infrared [cf. [20]], which means 
that in the future implementations of a hyperspectral instrument for indoor mapping, wavelengths greater 
than 1000 nm should also be considered. 

We also presented the results for infrastructure-free indoor positioning to obtain the position of the HSL and 
hence the targets. The accuracy of the fused position solution was already feasible for most indoor 
positioning applications. However, in the future we will fuse the sensor positioning algorithms with 
measurements obtained from the HSL for an accurate SLAM solution. We anticipate the SLAM localization 
accuracy to improve up to decimetre level.  

This study is the first step towards spatially resolved target identification and mapping. Although these 
results are preliminary, they show the potential of using a multispectral lidar enhanced indoor mapping in 
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localizing different targets and phenomena, such as humidity or mold in building structures. In future, this 
will enable the use of indoor SLAM not only for navigation of people or autonomous vehicles but also for 
autonomous surveillance in construction or security applications. 
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